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      Edinburgh, EH14 4AS

Research
Interests

Numerical analysis and partial differential equations, in particular:

● Pseudodifferential and boundary integral operators, microlocal analysis
● Theoretical numerical analysis of boundary problems
● Applications in engineering, computer science and the natural sciences

Education Leibniz University Hannover, Hannover/Germany

Ph.D. in Mathematics (2010)
Thesis title: Topics in singular analysis with applications to numerical analysis 

 and to representation theory.

Diploma in Mathematics (2006), Diploma in Physics (2005)

Employment Maxwell Institute for Mathematical Sciences and Heriot–Watt University, Edinburgh 
Associate professor / Reader (2016 – )
Assistant professor / Lecturer (2013 – 2016, permanent)  

Visiting research professor, University of Paderborn 
(May 2015 – May 2016, April – July 2017, Nov – Dec 2019)

Postdoc, University of Copenhagen (July 2010 – July 2013)

Research assistant, Leibniz University Hannover (Oct 2006 – June 2010)

Awards Wissenschaftspreis Hannover 2010 (biennial thesis award of Leibniz University)

Prediploma Award of the Christian Kuhlemann Foundation and Leibniz University

Fellowship of the German National Merit Foundation

Students Ph.D.: A. Alpyspayeva, N. Louca, K. Quaine, R. He and D. Torkington (with A. A. Lacey) 

graduated Ph.D. students: 
J. Stocek (→ postdoc Cambridge / British Antarctic Survey)
C. Özdemir (with E.P. Stephan → postdoc TU Graz)
G. Estrada-Rodriguez (→ FSMP fellow and postdoc, Sorbonne, Paris)
M. Iqbal (with O. Laghrouche / M.S. Mohamed → permanent researcher, National University
of Science and Technology, Pakistan)
D. Stark (→ Canon medical)

5 M.Sc. students, 1 M.Math. student, 11 B.Sc. students, 8 undergraduate research projects

Extended
Research

Visits

University of Paderborn (visiting research professor) April–July 2017, Nov–Dec 2019

Institut Henri Poincaré / Centre Émile Borel, Paris Oct 2016

Technical University of Vienna (visiting professor) June 2016

University of Paderborn (visiting research professor) May 2015 – May 2016

École Normale Supérieure, Paris (professeur invité) Nov / Dec 2014

Centre de Recerca Matemàtica, Barcelona June / July 2013

Rutgers, New Brunswick Nov 2012

Max Planck Institute for Mathematics, Bonn (postdoc) Aug / Sept 2011

Institut Henri Poincaré / Centre Émile Borel, Paris June 2009

Mathematical Sciences Research Institute, Berkeley Sept – Dec 2008

ETH Zürich June / July 2008

Lecturing
Visits

African Institute for Mathematical Sciences, Biriwa May 2014
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Publications 36 refereed articles (as listed in Web of Science), in numerical analysis, pure and applied 
analysis, representation theory and computational engineering

Invited Talks
(since 2010)

More than 50 invited talks at international mathematics and engineering conferences. 

More than 45 invited talks in departmental seminars since 2010, e.g. in Bonn, Oxford, 
Paris, Stanford.

Grants Total of ca. €1.400.000, including:

Danish Science Foundation FNU postdoctoral grant (2010–2012)

EPSRC Impact Acceleration Award (2016–2017)

Funding for Ph.D. students: Avicenna Foundation (Özdemir), Bolashak presidential 
scholarship (Alpyspayeva), Chinese funding (He), EPSRC CDT (Estrada, 
Louca, Stark, Stocek), James-Watt scholarship (Iqbal), AWE plc. (Quaine, Torkington).

Numerous smaller grants for research beyond departmental resources, e.g. from Clay 
Institute, Scottish Funding Council, London Mathematical Society.

Conference
Organization

13 international conferences and 4 graduate schools, most recently: 

Convex Integration and Nonlinear PDEs
(with G.-Q. Chen, R.J. Knops, M. Slemrod, L. Szekelyhidi, ICMS / Edinburgh, 2021)

Mathematical Modelling of Energetic Materials 
(with A.A. Lacey, J. Curtis, ICMS / Edinburgh, 2019)

Magnitude 2019 – Analysis, Category Theory, Applications 
(with M. Goffeng, T. Leinster, Edinburgh, 2019)

Recent Advances in Enriched Finite and Boundary Element Methods
Minisymposium within European Conference on Computational Mechanics 
(with O. Laghrouche, M.S. Mohamed, Glasgow, 2018)

Nonlinear Analysis and the Physical and Biological Sciences
(with J.M. Ball, J.C. Eilbeck, M. Grinfeld, R.J. Knops, ICMS / Edinburgh, 2018)

Activities
and Service

Organizer of Analysis seminar (2014 – 2015, since 2016) 

Maxwell Mini-Symposia Analysis and its Applications, resp. PDE (since Feb 2015)

Theme head for pure/applied analysis in Scottish Mathematical Sciences Training Centre

Reviewer for grant proposals: EPSRC (UK), European Science Foundation, FWO 
(Belgium), FWF (Austria), GACR (Czech Republic), MIUR (Italy)

Reviewer for numerous journals in numerical analysis, pure and applied analysis, 
acoustics and computational engineering

Department representative on 
 North British Functional Analysis Seminar (since June 2014),
 Edinburgh Mathematical Society General Committee (2013 – 2016).

Acting Director for Training of the EPSRC Centre for Doctoral Training MIGSAA (2017, 
deputy 2015 – 2016)

Member of Mathematics Undergraduate Board of Studies (2014 – 2015)

Teaching M.Sc. course Research and Industry Topics Spring 2020
Ph.D. course Variational Methods for PDEs (with J.M. Ball) Spring 2019
Ph.D. course Numerical Analysis Spring 2018 / 20
Ph.D. course Harmonic Analysis and Function Spaces (broadcast via SMSTC) Spring 2017
Ph.D. short course Interface and Contact Problems (TU Wien) June 2016
Ph.D. course Pure Analysis 2 (1/3 of course, broadcast, SMSTC) Spring 2015/17/18/19/20
Ph.D. course Applied Analysis and PDEs 2 (broadcast, SMSTC) Spring 2015/17/18/19/20
B.Sc. course Numerical Analysis A Spring 2014 / 15
M.Sc./Ph.D. course Pseudodifferential Operators and Spectral Theory Fall/Winter 2011
M.Sc. course Differential Operators and Function Spaces II Summer 2011 / 12
B.Sc. course Introduction to Partial Differential Equations Fall 2010
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Significant
Publications

1) with M. Goffeng, On the magnitude function of domains in Euclidean space, American
Journal of Mathematics, to appear (2021).
(+ 4 invited blog posts at n-Category Cafe, https://golem.ph.utexas.edu/category)

2) with J. Stocek, C. Urzua-Torres, Optimal operator preconditioning for pseudodifferential
boundary problems, Numerische Mathematik, to appear (2021).

3) with B. Krötz, On Sobolev norms for Lie group representations, Journal of Functional
Analysis 280 (2021), 108882.

4) with C. Özdemir, D. Stark and E. P. Stephan, A residual a posteriori error estimate for
the time-domain boundary element method, Numerische Mathematik 146 (2020), 239 – 280.

5) with G. Estrada-Rodriguez and E. Estrada, Metaplex networks: Influence of the exo-endo
structure of complex systems on diffusion, SIAM Review 62 (2020), 617 – 645, Research
Spotlights.

6) with G. Estrada-Rodriguez, K. J. Painter and J. Stocek, Space-time fractional diffusion in
cell movement models with delay, Mathematical Models and Methods in Applied Sciences
29 (2019), 65 – 88.

7) with F. Meyer, C. Özdemir, D. Stark and E. P. Stephan, Boundary elements with
mesh refinements for the wave equation, Numerische Mathematik 139 (2018), 867 – 912.

8) with L. Banz, A. Issaoui and E. P. Stephan, Stabilized mixed hp-BEM for frictional
contact problems in linear elasticity, Numerische Mathematik 135 (2017), 217 – 263.

9) with A. Costea and E. P. Stephan, A Nash–Hörmander iteration and boundary
elements for the Molodensky problem, Numerische Mathematik 127 (2014), 1 – 34.

10) with B. Krötz and C. Lienau, Analytic factorization of Lie group representations, Journal
of Functional Analysis 262 (2012), 667 – 681.



Research program “Time domain boundary elements for interface

and free boundary problems”

Background: The study of elastodynamics has applications from mechanical and civil engineering to

seismic risk assessment and geological soil analysis. The Finite Element Method is the main approach

for its solution. However, for problems in unbounded domains, such as scattering problems, it requires

to truncate the computational domain and impose suitable conditions on the artificial boundary.

Reflections at this artificial boundary can invalidate the results. The Boundary Element Method

(BEM) provides an efficient solver in unbounded domains, by reducing the problem to an integral

equation on the bounded scatterer.

The BEM has become a standard tool for acoustic and elastic problems in the frequency domain.

Directly in the time domain, BEM has attracted much recent interest, including for problems which

are not feasible in the frequency domain due to nonlinearities or because they involve a wide range of

frequencies. For the time-dependent problem, additional care is required to obtain numerically stable

formulations, see [10, 19]. In particular, for the acoustic wave equation long-time stability and excellent

approximation properties are known for weak formulations related to the energy [2, 11, 13, 14, 15].

Current research with A. Aimi and G. Di Credico from Parma initiates the study of high-order

boundary elements for scattering problems for the time dependent Lamé equation in elasticity [6]. To

be specific, it focuses on soft scattering problems, i.e. problems in the exterior Rn \Ω of a polyhedral

domain Ω, where n = 2 or 3, with Dirichlet boundary conditions. The problem is formulated as the

equivalent weakly singular integral equation

f(x, t) = Vφφφ(x, t) =

∫ t

0

∫
∂Ω
G(x,y, t, s)φφφ(y, s) dσy ds , for (x, t) ∈ ∂Ω× [0, T ]. (1)

Here, G = {Gij}ni,j=1 is the fundamental solution of the Lamé equation. Based on a careful regularity

analysis of the solution φφφ to (1), we develop discretizations which provably converge with optimal

convergence rate to φφφ. They are based on geometrically graded meshes and may use polynomials of

arbitrarily high degree (h, p and hp versions) [11, 13].

This project aims to use these recent theoretical advances for the Dirichlet and Neumann problems to

study boundary element and coupled finite element/boundary element methods for interface problems

and free boundary problems. Fundamental examples are the dynamic transmission problems, fluid-

structure interaction and hyperbolic variational inequalities like the obstacle/contact problems in

elasticity [12, 16], nonlinear problems which cannot be solved in frequency domain. While there has

been much recent progress for the scalar wave equation [1, 3, 4, 7], several of the techniques rely on

its scalar nature. The analysis and numerical analysis of key problems, in particular fluid-structure

interaction and variational inequalities [17], are wide open and shall be investigated during this stay.

Goals: The analysis in [6] for the weakly singular operator V for the Dirichlet problem and the hyper-

singular operator associated to the Neumann problem provides a basis to consider the full Calderón

projector for the time-dependent Lamé equation. A subtle question is the coercivity of this operator,

which arises in the boundary integral formulation of most interface problems. In a first step, the

analysis in [6] is extended to this setting.

Second, we use the coercivity of the Calderón projector to formulate a boundary element method

for the classical Signorini (thin obstacle) problem for elasticity. The analysis and development of

stable discretizations for this contact problem is a long-standing challenge [12, 16, 17], and even the

existence of solutions is unknown. [12] provided the first provably convergent discretization for a

scalar toy problem, by exploiting refined coercivity properties of the Dirichlet-Neumann operator for
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the wave equation which are not known for the Lamé equation. Nevertheless, initial work with Aimi,

Di Credico and Stephan indicates the stability of a similar method also for the Lamé equation in

2d. These preliminary results lead us to investigate the proposed method numerically and rigorously

establish its stability. We might hope to prove convergence (and thereby existence of solutions) in

special cases.

Third, we consider the coupling of finite elements and boundary elements. The coercivity of

the Calderón projector allows to formulate stable formulations for interface problems involving two

different media, like transmission or fluid-structure interaction. Starting from the joint work [6], we

consider fast h, p and hp discretizations which resolve the singularities of the solutions from the

interface and provably converge with optimal convergence rate. Key for the extension of the results

from [6] to interface problems is the fine analysis of the regularity of solutions in [18].

While the three goals above focus on the analytical and approximation-theoretic problems, efficient

codes require careful algorithmic considerations. Galerkin solutions to (1) based on piecewise constant

ansatz and test functions in time lead to a linear system with block lower triangular Toeplitz matrix.

The lower triangular form allows to solve the space-time system by backsubstitution, resulting in a

marching in on time time stepping scheme. Because of the Toeplitz structure, only one spatial matrix

needs to be computed and stored for each time step. Unfortunately, the matrix elements are space-

time double integrals with weakly singular kernels, depending on primary and secondary wave speeds,

multiplied by Heaviside functions modeling wave front propagation and functions not regular in the

first spatial derivative. An efficient composite graded quadrature has been implemented in [5], and

the analysis of this quadrature in 2D and 3D will be considered in this project.
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Course: Numerical Methods for Differential and Integral Equations

Degree: Mathematics

Type of course: Supplementary subjects

Language of instruction: English

Lecturers: Gimperlein, Heiko

Academic year: 2021/2022

Semester: Second semester (preferred)

Number of credits: 6

Unit coordinator: Gimperlein, Heiko

Contact hours: 48

Individual work hours: 90

Learning outcomes of unit:

� Knowledge and understanding of elementary concepts for the numerical modeling of elliptic and parabolic

partial differential equations, in particular, based on finite difference, finite element, spectral and boundary

element methods.

� Ability to program the discussed numerical methods in Matlab for classical elliptic and parabolic linear

equations, as well as the evaluation of algorithmic aspects, accuracy, stability and efficiency.

� Autonomy of judgment in evaluating the approximation algorithms and the obtained results also through

discussion with one’s peers in possible team work.

� Ability to clearly communicate the acquired concepts and to discuss the obtained results.

� Ability to learn the drawbacks and the advantages of models and methods of resolution and to apply

them in different working and scientific contexts.

Prerequisites:

� Basic methods and algorithms of numerical analysis.

� Knowledge of a programming language.

Course contents summary:

� Relevant background in analysis: Sobolev spaces, variational formulations of elliptic PDEs, relevant

functional analysis.

� Finite difference methods for elliptic problems: introduction, implementation, basic analysis.

� Galerkin methods for elliptic problems: stability, error analysis, implementation of standard finite element

methods.

� Spectral methods for elliptic problems: spectral Galerkin and collocation methods.

� Methods for parabolic problems: time discretization, implicit and explicit Euler method.

� Advanced topics, including boundary element methods and adaptive methods.
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Recommended readings:

� “Finite Elements”, D. Braess, Cambridge University Press, 2010.

� “Numerical Approximation of Partial Differential Equations”, A. Quarteroni, A. Valli, ed. Springer, 1994.

� “Spectral Methods: Algorithms, Analysis and Applications”, J. Shen, T. Tang, L.-L. Wang, Springer,

2011.

� “A finite element primer”, D. J. Silvester,

https://personalpages.manchester.ac.uk/staff/david.silvester/primer.pdf .

� “Spectral Methods in Matlab”, L. N. Trefethen, SIAM, 2000.

Teaching methods:

During the lectures the contents of the course will be analyzed, highlighting the difficulties related to the

introduced numerical techniques. Moreover, the course will consist of a part of autonomous re-elaboration,

supervised by the professor, consisting in the application of the numerical techniques through laboratory

programming. This activity will allow students to acquire the ability to deal with “numerical” difficulties

and to evaluate the reliability and consistency of the obtained results.

Assessment methods and criteria:

The exam includes:

� the assignment of a work for the application of numerical techniques introduced to solve a specific problem.

The analysis of the results obtained by the student will allow to evaluate the acquisition of the above

listed skills. In particular the threshold of sufficiency is fixed to the ability to achieve reliable numerical

results.

� an assessment of the knowledge through a discussion of topics of the course. The threshold of sufficiency

consists in the knowledge of the discriminating characteristics of the various methods presented in the

course.
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